Gene regulation by nucleosome positioning

Lu Bai1 and Alexandre V. Morozov2

To achieve high compaction, most genomic DNA in eukaryotes is incorporated into nucleosomes; however, regulatory factors and transcriptional machinery must gain access to chromatin to extract genetic information. This conflict is partially resolved by a particular arrangement of nucleosome locations on the genome. Across all eukaryotic species, promoters and other regulatory sequences are more nucleosome-depleted, whereas transcribed regions tend to be occupied with well-positioned, high-density nucleosomal arrays. This nucleosome positioning pattern, as well as its dynamic regulation, facilitates the access of transcription factors to their target sites and plays a crucial role in determining the transcription level, cell-to-cell variation and activation or repression dynamics.

General view of nucleosomes and transcription

The nucleosome is the fundamental repeating unit of eukaryotic chromatin, consisting of 147 bp of DNA wrapped around a histone core [1]. The histone genes and nucleosome structure are extremely well conserved among eukaryotic species. Importantly, the nucleosome is not just a static building block of chromatin structure. Histones are constantly evicted and reassembled onto the DNA template in a locus-specific fashion, and during such turnover they are sometimes replaced by histone variants. Histones can be marked by a large number of post-translational modifications. These histone variants and covalent modifications affect histone–DNA and histone–histone interactions, as well as interactions between histones and regulatory factors. The accessibility of a binding site for a particular factor is also affected by its position with respect to neighboring nucleosomes: sites in the nucleosome-free linker DNA should be easier to access than those in the middle of a nucleosome. These nucleosome properties, including positioning, turnover and histone variations and modifications, play essential roles in gene regulation by affecting the transcriptional competence of various chromatin regions.

With the recent development of global nucleosome mapping techniques, the research on nucleosome positioning has entered a fast-growing phase. Here, we review the recent progress made in this area, focusing in particular on the relationship between nucleosome positioning and gene regulation.

Genome-wide nucleosome distribution

 Genome-wide mapping reveals “canonical” nucleosome positioning in vivo

The development of microarrays and next-generation sequencing has made it possible to map nucleosome positions on the global scale [2] (Box 1). To date, nucleosome positions have been mapped on many genomes including those of yeast, fly, worm and human, and many more experiments are underway [3–14]. Nucleosome positioning across the genome is far from random. The most striking feature revealed by global mapping is the contrast between nucleosome density in regulatory regions and that in transcribed sequences. In budding yeast, >90% of the promoters contain stretches of DNA with very low nucleosome occupancy [3,4,6,8,11,12]. These nucleosome-depleted regions (NDRs) are on average ~150 bp in length, roughly enough to accommodate a single nucleosome. The NDRs play a crucial role in transcription regulation (see below). The rest of the promoter sequence is assembled into nucleosomes. Some of these nucleosomes have unusual properties, including enrichment in certain histone variants and high turnover rates [15–18], which might also contribute to the regulation of gene expression.

Sequences downstream of the transcription start site (TSS) are usually occupied by well-positioned nucleosomes. Interestingly, when the genome-wide nucleosome density map is aligned with the TSSs of individual genes, nucleosomes in the vicinity of TSSs tend to be located at specific positions, especially the so-called +1 nucleosome (Figure 1a). Further upstream and downstream, nucleosomes gradually lose their phasing. It should be stressed that not all promoters have the nucleosome distribution shown in Figure 1a. For instance, some promoters have nucleosomes in between NDRs and TSSs, such as the PHO5 and CLN2 promoters [19,20]. There are also promoters that lack detectable NDRs.

This stereotypical nucleosome configuration is to some extent conserved across all eukaryotic species (Figure 1b). In human cells, nucleosome positioning near TSSs also exhibits the canonical configuration, especially for CpG promoters [9,21–23]. More complicated than in yeast, nucleosome coverage in higher eukaryotes could be cell-type-specific. For instance, nucleosome depletion on the Polycomb response elements of the HOX promoters has been shown to occur during the differentiation of human embryonic stem cells, presumably to facilitate the binding of Polycomb group proteins to achieve gene silencing [24]. The loss of an
NDR has also been observed in the promoter of the tumor-suppressor gene MLH1 in cancer cells [25]. Therefore, given the complex chromatin organization and regulatory pathways found in higher eukaryotes, studying nucleosome positioning and its dynamics could provide crucial insights into identifying TSSs, enhancers and other key genomic elements involved in transcriptional reprogramming.

Potential problems with the nucleosome mapping method and interpretation
Although high-throughput nucleosome mapping is extremely informative, we should be aware of several potential problems with the current approaches. Most of these studies employ micrococcal nuclease (MNase) digestion to liberate mononucleosome core particles for subsequent sequencing or microarray hybridization (Box 1). It is well known that MNase preferentially cleaves DNA at A/T-rich sites [26–28]. As a result, large nucleosome maps are biased to some extent towards DNA sequences that are more amenable to MNase digestion. Indeed, mononucleosome-sized sequences obtained by the partial MNase digestion of naked genomic DNA exhibit some of the features of nucleosome positioning sequences collected in high-throughput experiments, such as the enrichment of G/C- and depletion of A/T-containing dinucleotides, which is reversed immediately outside the nucleosome border (unpublished observation). In addition, it was recently shown that certain nucleosomes in yeast and human promoters could be especially unstable with respect to salt and MNase [29,30]. Therefore, NDRs previously identified by MNase digestion might not all be nucleosome-free.

Hybridizing nucleosomes to tiling microarrays (which provide a direct nucleosome occupancy readout) introduces a certain loss of resolution: although the latest Affymetrix arrays tile the yeast genome with 4–5 bp steps [4,31], some of the work has employed an earlier customized array with 20 bp steps [3,32]. Although high-throughput sequencing formally provides 1 bp resolution, exact nucleosome positions are still unknown because MNase does not cut DNA precisely at the nucleosome boundary. Furthermore, high-throughput sequencing datasets contain regions of abnormally high and low read coverage, which need to be excluded before genome-mapped read coverage can be interpreted as nucleosome occupancy [12].

Figure 1. Stereotypical nucleosome positioning in the vicinity of gene transcripts. (a) Averaged in vivo (red) [12] and in vitro (blue) [70] nucleosome occupancy of Saccharomyces cerevisiae genes aligned by their TSSs. (b) Schematic representation of typical in vivo nucleosome positions in S. cerevisiae (interpreted from data in (a) and in several other species (based on similar measurements [7,9,14]). Arrow: TSS. Yellow oval: nucleosome. The more yellowish the nucleosome, the better it is positioned relative to the TSS. The gray ovals overlapping with each other represent nucleosomes without any phasing. Note that the +1 nucleosome is further downstream in Drosophila and human cells compared with yeast. The nucleosomal repeat length (average distance between neighboring nucleosomes) can also be different in different species.
Effect of nucleosome positioning on gene expression
Nucleosome configuration versus transcription on inducible promoters
A clear example illustrating how nucleosomes function in transcriptional regulation is provided by the phosphate-regulated PHO5 promoter (PHO5pr). At high phosphate concentration, the repressed PHO5pr is assembled into an array of well-positioned nucleosomes interrupted by a ∼80 bp NDR. The NDR is constitutive (independent of the transcriptional status of PHO5pr), and contains one of the binding sites of the activator Pho4 [19] (Figure 2a). Upon activation, the nucleosomes –1 to –4 are disassembled from the promoter, exposing an additional Pho4 binding site, as well as allowing transcriptional machinery to access the TATA box. On the GAL1-10 promoter, four binding sites of the activator Gal4 are located in an unstable, partially unwound nucleosome bound by the nucleosome-remodeling enzyme RSC, which apparently allows efficient Gal4 binding [33] (Figure 2b). Under activating conditions, nucleosomes flanking the upstream activation sequence are rapidly removed from the promoter and the Gal gene is activated [34]. Similar changes in nucleosome configuration are observed on PHO8pr and CHA1pr [35,36].

Besides genes responding to environmental cues, nucleosome configuration changes through the cell cycle at many cell-cycle-regulated promoters [37]. CLN2pr, for example, contains three nucleosomes and a ∼300 bp NDR (Figure 2c). During the cell cycle, the NDR remains nucleosome-depleted, whereas the occupancy of –1 and –2 nucleosomes fluctuates. The timing of nucleosome eviction coincides with the activation of CLN2 [20]. The activator-binding and nucleosome-depletion process can even happen in tandem: on HOpr, the binding of activator Swi5 in the upstream NDR causes the eviction of neighboring nucleosomes and eventually leads to a second “wave” of downstream nucleosome depletion, which exposes multiple SBF (activator) binding sites and allows efficient SBF binding and transcriptional activation [38] (Figure 2d). This complicated pathway serves to implement cell-type regulation (Swi5 is only active in mother cells) on top of SBF cell cycle regulation.

Figure 2. Nucleosome configurations of several S. cerevisiae promoters in their transcriptionally repressed and activated states. In all panels, the arrows represent the TSS; blue triangles: TATA boxes; red or green rectangles: activator binding sites; red or green ovals: activators; yellow ovals: nucleosomes. (a) The repressed PHO5pr contains a well-positioned nucleosome array with an NDR in the middle. During activation, binding of the transcription factor Pho4 leads to the disassembly of nucleosomes –1 to –4, exposing all the functional sites and allowing the transcription machinery to bind [19]. If the nucleosomes fail to reassemble on PHO5pr (e.g. by the deletion of the histone chaperone SPT6), transcription can persist even after Pho4 dissociation, indicating that the nucleosomes might be solely responsible for PHO5pr repression [40]. (b) The GAL1-10 promoter contains a RSC–nucleosome complex covering four Gal4 (activator) binding sites, which apparently allows the efficient binding of the Gal4 protein [33]. Similar to PHO5pr, nucleosomes are rapidly removed from GAL1-10pr upon its activation. However, in certain conditions GAL1-10pr can remain repressed and nucleosome-free, indicating that nucleosomes are not the only mechanisms for gene repression [34]. (c) CLN2pr is a cell cycle-regulated promoter that has three SCBs located in an NDR. The NDR is constitutive during the cell cycle, whereas the downstream nucleosomes dissociate during CLN2 activation and reassemble during repression [20]. (d) The activation of HOpr follows two steps: first, Swi5 (green) binds on the upstream NDR located around the upstream repressing sequence 1 (URS1) and causes the eviction of neighboring nucleosomes. Second, the “wave” of nucleosome depletion extends downstream in the URS2, allowing the efficient binding of SBF and transcriptional activation [38].
Activators require coactivators to change nucleosome configuration, including nucleosome remodelers, histone modifiers, histone chaperones and FACT (for facilitating chromatin transcription) complexes [38–41]. In many cases, coactivators load onto the promoter in a sequential manner, indicating that they can be recruited by each other [42]. Different promoters seem to require different sets of coactivators. Such specificity could be partially explained by the binding preferences of different activators [43]. It could also be affected by the nucleosome configuration on the promoter. For instance, the disruption of Sin3p–Rpd3p histone deacetylase complex, which targets HOpr, would increase the nucleosome acetylation level on HOpr and reduce the need of Gcn5 for HO activation [44,45]. Finally, the activator binding site occupancy, which is affected by activator concentration, binding strength and nucleosome density over the binding site, has been found to significantly affect the requirement of coactivators [46–48].

What happens during repression? In most cases, repression is accompanied by chromatin reassembly. On PHO5pr, histone deposition is mediated by the histone chaperone Spt6 [49]. In the absence of Spt6, PHO5pr remains nucleosome-free and transcriptionally active after the dissociation of the activator Pho4 [50]. This result indicates that nucleosome coverage could be solely responsible for PHO5pr repression, and nucleosome-free PHO5pr is sufficient for supporting transcriptional activity. However, under certain conditions, Gal4 can continue to bind on the GAL1–10pr and recruit factors that maintain the promoter nucleosome-free while transcription is repressed [34]. Therefore, nucleosome coverage of promoter and repression is not always tightly coupled.

Nucleosome configuration versus transcription on constitutive promoters

The promoters discussed above are so-called “inducible promoters”. They are more likely to contain a TATA box [51] and, unlike the canonical nucleosome configuration (Figure 1a), the regions immediately upstream of the TSS on these promoters tend to be nucleosome-rich under repressive conditions. In this way, the TATA box and TSSs are covered by nucleosomes, keeping the TATA box inaccessible to the TATA-binding protein (TBP) [52] and basal transcription at a low level, which can help achieve a larger dynamic range in expression.

By contrast, constitutive promoters are often TATA-less and more likely to adopt the canonical nucleosome configuration [11,53]. Some of them, such as AKY2 and RIO1, lack “traditional” activating signals and only contain sequence elements that antagonize nucleosome formation [54,55]. In these cases, the NDRs immediately upstream of the TSS are apparently sufficient to support transcription, presumably by allowing the transcription machinery to bind without competing with nucleosomes. Some constitutive promoters bind transcription factors to modulate the level of transcription, albeit within a smaller dynamic range. For instance, the expression level of some constitutive promoters varies when a certain environmental condition is changed (e.g. a switch of carbon source). However, unlike inducible promoters, such transcriptional regulation is usually not accompanied by a significant rearrangement of promoter nucleosomes [31].

Nucleosome effects on transcription factor binding

Many functional activator binding sites are located in NDRs. Even on inducible promoters, which tend to have higher nucleosome coverage, some activator binding sites are usually pre-exposed (Figure 2). For the transcription factor SBF, among 50 SBF-bound promoters, 49 have at least one of their candidate SBF binding sites (SCBs) in constitutive NDRs [20]. The only exception is the HO promoter, where the NDR over SCBs is created right before activation (see above). The prediction of Leu3 binding sites in vivo was found to be significantly improved by considering its preference to binding sites located inside NDRs [56]. The correlation between NDRs and binding sites could even be exploited to identify new regulatory elements; for example, the NDRs near human HOX genes have revealed targeting sequences of Polycomb proteins [24]. These results strongly indicate the importance of the NDR localization of regulatory sites.

However, NDRs are not always essential for activator binding. Some factors, such as NF–κB p50, can apparently bind to nucleosomal DNA with the same affinity as free DNA by accommodating the nucleosome structure in a ternary complex including DNA, nucleosome and transcription factor [57]. Many other factors can access their nucleosomal binding sites but with a lower binding affinity [58]. This process is likely to be promoted by nucleosome dynamics including the spontaneous “wrapping–unwrapping” of nucleosomal DNA under thermal fluctuations [59], and histone turnover that might result in temporarily released naked DNA [17,18]. The occupancy of activators on its nucleosomal site should be affected by the activator concentration, intrinsic binding affinity, stability of DNA on the nucleosome surface, location and orientation of the binding sites relative to the nucleosome core and presence of histone variants and modifications. In the presence of multiple binding sites in a single nucleosome, one bound factor can secure partially unwrapped nucleosomal DNA and facilitate the binding of a second factor, inducing apparent binding cooperativity [60]. The factors bound on the nucleosomal sites can then recruit coactivators, remodel nucleosomes (including the ones covering their own binding sites) and activate transcription. For instance, Gal4, Pho4 and SBF have all been reported to be able to access their embedded binding sites, disrupting local nucleosomes and driving gene expression to higher levels [20,33,48,61,62].

Given the observations above, what could be the advantage of having activator-binding sites localized in NDRs? First, activation via nucleosome-covered sites might require higher activator concentration and have elevated dependence on nucleosome remodeling complexes [20,48]. Second, the binding competition between the activator and nucleosomes can delay the transcriptional response to the activating signal, a case demonstrated by Gal4 activation [33]. Third, nucleosome-embedded activator-binding sites could lead to higher transcriptional variability. For instance, with buried SCBs, SBF activation becomes bimodal: strong activation is observed in some cell cycles but is undetectable in others. By contrast, nucleosome-free SCBs lead to reliable
activation, once per cell cycle [20]. Consistently, there is a genome-wide positive correlation between nucleosome density on activator binding sites and transcriptional noise [11,53,63]. All these observations are potentially related: the weak binding of the activator might elevate the need for nucleosome remodelers [46,47]; the extra remodeling step could delay the activation onset; and a slower response to the activation signal could result in no activation at all when the activator is only available transiently (as in the case of SBF). The requirement for higher activator concentration, elevated dependence on the nucleosome remodeler, slower activation response and unreliable activation are likely to entail a fitness cost, as has been demonstrated directly using CLN2pr variants [20].

Because the activators access their nucleosomal versus exposed binding sites with different affinities and timescales, promoters sometimes fine-tune their nucleosome coverage to achieve certain activation dynamics. On Pho4-activated promoters, it was found that the affinity of the NDR-localized Pho4 binding site is the primary determinant of the minimal Pho4 concentration for activation, whereas the nucleosome-embedded site contributes significantly more to the final expression level once the nucleosomes are removed [62].

Nucleosome effect on transcription initiation and TSS selection

In contrast to activators, which are able to access nucleosome-covered-binding sites, PolII assembly on promoters is more strictly anticorrelated with nucleosome occupancy. On all promoters mentioned above, PolIII initiation sites are either exposed upon activation or located in constitutive NDRs. Consistently in the human genome, nucleosome occupancy immediately upstream of TSSs is decreased in a PolII-dependent manner [21,22]. The transcription initiation complex is bulky and some of its components (such as TBP) severely bend DNA, which could explain why it is incompatible with the nucleosome structure. Indeed, TBP binding has been confirmed to be strongly inhibited when the TATA box is buried in a nucleosome [50,64]. Since correlation does not always imply causality, one can ask if nucleosome removal is a pre-requisite for PolII binding, or its consequence. On a PHO5pr with a mutated TATA box, PolII cannot load and activate transcription, but nucleosome loss occurs normally [65]. If nucleosome removal is blocked (for instance, by Asf1 deletion), PHO5pr cannot be activated [40]. When an NDR over RNR3pr is created artificially by the insertion of sequences unfavorable for nucleosome formation (see below), PolII is able to bind and drive transcription in the absence of normally required activating signals [66]. Artificially recruited TBP cannot remodel nucleosomes near the TATA box [67]. In addition, if we look at the sequence of events on HOpr, the nucleosome disruption starts shortly after being released from a meta-phase block, clearly preceding the PolII binding [38]. All this evidence indicates that at least the initial PolII binding is dictated by nucleosome positioning, not the other way around.

However, once PolII is bound and initiated, it could have a role in stabilizing the NDR as well as defining the NDR boundary. Supporting this view, the inactivation of Rpb1 (PolII large subunit) in yeast results in an increase in nucleosome density upstream of the TSS and a somewhat surprising downstream shift of +1 nucleosome [30]. In Drosophila cells, eliminating PolIII paused at the promoter–proximal regions also increases local nucleosome occupancy [68].

The narrow distribution of TSSs relative to the +1 nucleosome and systematic shift of this distance in different species (the upstream edge of nucleosome +1 relative to the TSS is −10 to −15 bp in budding yeast and around +60 bp in humans and flies) indicate a co-evolution of the TSS and the +1 nucleosome positioning [69]. Again, the causality between them could go both ways: either the nucleosome positioning limits the selection of the TSS by restraining the assembly site of the transcriptional machinery or the initiating transcription machinery interacts with and actively repositions the +1 nucleosome [70]. Overall, the mechanism of TSS selection is unclear, and the interplay between nucleosome positioning and the TSS provides an interesting avenue of research. In addition to transcription initiation, NDRs have been found on the 3’ end of many genes, and might have some function in transcription termination [8].

Nucleosome effect on transcription elongation and promoter–proximal pausing

The elongating polymerase has to go through a nucleosome barrier. In vitro under physiological salt concentrations, nucleosomes represent a formidable block for elongation [71]. On highly transcribed genes, such as the Drosophila Hsp70 gene after heat shock, nucleosomes in the entire transcribed region are disrupted in a transcription-independent manner, accommodating a high density of elongating polymerase [72]. However, most of the genes, even those with reasonably high transcription levels, are assembled into nucleosome arrays. A large group of factors is involved in facilitating PolII passage through the nucleosomes as well as maintaining the chromatin structure in this process [73].

Nucleosomes might also play an active role in regulating elongation. A significant fraction of genes in Drosophila and human cells have initiated but stalled PolII within their promoter–proximal regions [74,75]. Interestingly, PolII often stalls in both sense and antisense directions at around +50 bp (sense) and −250 bp (antisense) relative to the TSS. These two locations are close to the edge of the −1 and +1 nucleosomes, respectively. It is therefore tempting to speculate that nucleosomes play a role in the pausing of PolII.

The mechanism of nucleosome positioning

Because nucleosome positioning plays a crucial role in transcriptional regulation, it is important to understand how this positioning is established. Here, we briefly summarize some recent key developments in this rapidly developing field.

Nucleosome positioning and phasing based on intrinsic histone–DNA affinity

DNA is severely bent in the nucleosome structure [1], and DNA flexibility strongly affects intrinsic histone–DNA
For instance, GC-rich sequences are believed to facilitate nucleosome formation by increasing DNA flexibility [77–79], whereas relatively rigid poly-AT sequences disfavor nucleosome assembly [8,11,12]. In addition, because DNA bends differently in different directions, AA/TT/TA dinucleotides occur preferentially where the minor groove faces the histone octamer, whereas GC/CC/GG dinucleotides tend to occur where the minor groove points away [80]. In vitro, there is clear evidence that DNA sequences can position nucleosomes both translationally and rotationally (translational positioning refers to the 147 bp sequence covered by a histone octamer and rotational positioning refers to the 10–11 bp periodic orientation of the DNA helix in the histone–DNA complex), and it is appealing to think that nucleosome positions in vivo are also largely controlled by the underlying DNA sequence.

Recently, considerable effort has been devoted to testing this hypothesis. Of special interest are genome-wide comparisons between in vivo and in vitro nucleosome maps. In the latter case, nucleosomes are assembled on genomic DNA using salt dialysis, so that nucleosome positions are affected solely by intrinsic histone–DNA interactions and steric exclusion [12,70]. Nucleosomes assembled in vitro were found to be depleted around the TSS (Figure 1a) and termination site, probably because the corresponding sequences are more poly-AT rich (although observed nucleosomes could be biased towards such sequences by MNase digestion, see above; unpublished observation). In addition, in vivo and in vitro nucleosomal DNA showed similar 10–11 bp periodicities of dinucleotide distributions, although the amplitude of the periodic change was more prominent in the latter case [12]. These observations lead to the proposal that nucleosome positions are controlled primarily by DNA sequence in living cells (the nucleosome code hypothesis) [11,12,81].

However, the importance of intrinsic histone–DNA interactions for in vivo nucleosome positioning remains controversial because there are substantial differences between in vitro and in vivo nucleosome maps in the vicinity of coding regions: NDRs are less pronounced in the former and the nucleosomes downstream of the NDRs are not phased (Figure 1a) [70]. Therefore, it has been argued that DNA sequence is not a major determinant of in vivo nucleosome positioning [70]. Because these differences are observed for in vitro chromatin assembled at the 1:1 histone-to-DNA mass ratio, which corresponds to in vivo levels of nucleosome occupancy, they cannot be attributed simply to the difference in total histone concentration. Rather, it has been proposed that the +1 nucleosome is localized in vivo through yet unknown interactions with the components of transcription initiation machinery, dictating downstream nucleosome positioning by steric exclusion (which might be aided by regularly spaced nucleosome positioning sequences).

Factors of multiple families can affect nucleosome positioning

Non-histone factors must play a role in nucleosome distribution because nucleosome positioning in vivo can be only partially predicted from DNA sequence and, moreover, is not static but dynamically regulated. Some DNA-binding factors in yeast, such as Abf1, Reb1 and Rap1, have been proposed to have “chromatin reorganizing” activity, either by directly competing with histones for DNA binding or by recruiting chromatin remodelers to displace neighboring nucleosomes [32]. Consistently, the binding sites of Abf1 and Reb1 have large discrepancies between their in vivo and in vitro nucleosome occupancies [12]. An essential remodeler RSC can directly bind to specific sequences of DNA, and the deletion of its subunits with DNA-binding or ATPase activity affects a significant fraction of NDRs [32,82]. Moreover, once NDRs are formed, they can serve as “barriers” that constrain the locations of nearby nucleosomes by the so-called “statistical positioning” mechanism [8,83].

It should be noted that some NDRs observed in vivo do not contain poly-AT or the binding sites of the factors mentioned above (unpublished observation), and not all NDRs are affected by the deletion of these factors [32,82]. In addition, the NDRs responding to the factor deletion tend to shrink instead of completely disappear [32]. Therefore, the NDR formation mechanism requires further elucidation.

Concluding remarks and future perspectives

Nucleosome positioning is an important chromatin feature that regulates gene expression. In particular, nucleosome depletion in the promoter and the precise positioning of the downstream nucleosomes play crucial roles in determining the transcription level, cell-to-cell variation, activation and repression dynamics, and might also function in defining the start and end points of transcribed regions. Nucleosomes affect transcription mostly by modulating the accessibility of regulatory factors and the transcriptional machinery to the underlying DNA sequence.

There are still many remaining questions in this field (Box 2). However, there are recent publications that provide significant insights into some of these questions and more are to follow [49,84–86].

Box 2. Outstanding questions

- Why do some nucleosome-depleted promoters remain transcriptionally repressed?
- What determines the range and directionality of nucleosome remodeling?
- What is the relationship between NDRs and divergent transcription?
- How is nucleosome positioning established and maintained in vivo?
- Is there cell-to-cell variation in nucleosome positioning and how does it affect the variation in transcriptional activity?
- How is nucleosome positioning inherited through DNA replication?
- How does nucleosome positioning evolve among species?

Mavrich, T.N. et al. (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 18, 1073–1083

Mito, Y. et al. (2007) Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411

Korber, P. et al. (2006) The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHOS promoters. J. Biol. Chem. 281, 5539–5545

77 Peckham, H.E. et al. (2007) Nucleosome positioning signals in genomic DNA. Genome Res. 17, 1170–1177